Unit-111

Tree

In linear data structure data is organized in sequential order and in non-linear data structure data is organized in
random order. A tree is a very popular non-linear data structure used in a wide range of applications. A tree data
structure can be defined as follows...
* Tree is a non-linear data structure which organizes data in hierarchical structure and this is a recursive
definition.

A tree data structure can also be defined as follows...
* Tree data structure is a collection of data (Node) which is organized in hierarchical structure recursively

In tree data structure, every individual element is called as Node. Node in a tree data structure stores the actual data
of that particular element and link to next element in hierarchical structure.

In a tree data structure, if we have N number of nodes then we can have a maximum of N-1 number of links.

Ex:
TREE with 11 nodes and 10 edges
e 0 - In any tree with ‘N’ nodes there
will be maximum of ‘N-1’ edges
0 G o @ 0 - In a tree every individual
element is called as ‘'NODE’
Terminology

In a tree data structure, we use the following terminology...

Root

In a tree data structure, the first node is called as Root Node. Every tree must have a root node. We can say that the
root node is the origin of the tree data structure. In any tree, there must be only one root node. We never have multiple
root nodes in a tree.

®

Here ‘A’ is the ‘root’ node

- In any tree the first node is
called as ROOT node



Edge

In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree with 'N' number of
nodes there will be a maximum of 'N-1' number of edges.

- In any tree, ‘Edge’ is a connecting
link between two nodes.

Parent

In a tree data structure, the node which is a predecessor of any node is called as PARENT NODE. In simple words,
the node which has a branch from it to any other node is called a parent node. Parent node can also be defined as
"The node which has child / children".

(8)

Here A, B, C, E & G are Parent nodes

e 0 - In any tree the node which has
child / children is called ‘Parent’

e @ - A node which is predecessor of
any other node is called ‘Parent’

Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In simple words, the
node which has a link from its parent node is called as child node. In a tree, any parent node can have any number of
child nodes. In a tree, all the nodes except root are child nodes.

0 Here B & C are Children of A
Here G & H are Children of C

(B) (C) Here K is Child of G
- descendant of any node is called
0 e o @ 0 as CHILD Node
OO «



Siblings

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple words, the nodes with
the same parent are called Sibling nodes.

Here are Siblings
Here D E & F are Siblings
Here are Siblings
Here are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’

In a tree data structure, the node which does not have a child is called as LEAF Node. In simple words, a leaf is a
node with no child.

In a tree data structure, the leaf nodes are also called as External Nodes. External node is also a node with no child.
In a tree, leaf node is also called as 'Terminal' node.

HereD, |, J, F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

@ ® ® - A node without successors is
called a ‘leaf’ node

Internal Nodes

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In simple words, an
internal node is a node with atleast one child.

In a tree data structure, nodes other than leaf nodes are called as Internal Nodes._The root node is also said to be
Internal Node if the tree has more than one node. Internal nodes are also called as 'Non-Terminal' nodes.




0 Here A, B, C, E & G are Internal nodes

- In any tree the node which has atleast
e 0 one child is called ‘Internal’ node

- Every non-leaf node is called

G @ as ‘Internal’ node

Degree
In a tree data structure, the total number of children of a node is called as DEGREE of that Node. In simple words,

the Degree of a node is total number of children it has. The highest degree of a node among all the nodes in a tree is
called as 'Degree of Tree'

Here Degree of Bis 3
Here Degree of Ais 2
Here Degree of Fis 0

- In any tree, ‘Degree’ of a node is total
number of children it has.

Level

In a tree data structure, the root node is said to be at Level 0 and the children of root node are at Level 1 and the
children of the nodes which are at Level 1 will be at Level 2 and so on... In simple words, in a tree each step from top
to bottom is called as a Level and the Level count starts with '0' and incremented by one at each level (Step).

0 Level 0

(B) 0 Level 1
OO E Level 2
oNO G Level 3

Height
In a tree data structure, the total number of edges from leaf node to a particular node in the longest path is called as

HEIGHT of that Node. In a tree, height of the root node is said to be height of the tree. In a tree, height of all leaf
nodes is '0’.
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Here Height of tree is 3

- In any tree, ‘Height of Node’ is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree’ is
the height of the root node.

Heightis 0

Depth

In a tree data structure, the total number of egdes from root node to a particular node is called as DEPTH of that
Node. In a tree, the total number of edges from root node to a leaf node in the longest path is said to be Depth of the
tree. In simple words, the highest depth of any leaf node in a tree is said to be depth of that tree. In a tree, depth of
the root node is '0'.

Here Depth of tree is 3

- In any tree, ‘Depth of Node’ is
total number of Edges from root
to that node.

- In any tree, ‘Depth of Tree’ is
total number of edges from root
to leaf in the longest path.

Depth is 3

Path

In a tree data structure, the sequence of Nodes and Edges from one node to another node is called as PATH between
that two Nodes. Length of a Path is total number of nodes in that path. In below example the path A - B - E - J has
length 4.

0 - In any tree, ‘Path’ is a sequence
of nodes and edges between two

® EB G 6 O
ONOBNO

Here, ‘Path’ between A & J is
A-B-E-)

Here, ‘Path’ between C & K is
C-G-K

Sub Tree
In a tree data structure, each child from a node forms a subtree recursively. Every child node will form a subtree on
its parent node.



Subtree
Subtree

Binary Tree

In a normal tree, every node can have any number of children. A binary tree is a special type of tree data structure in
which every node can have a maximum of 2 children. One is known as a left child and the other is known as right
child.

* Atree in which every node can have a maximum of two children is called Binary Tree.
In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than 2 children.

Ex:

There are different types of binary trees and they are...

1. Strictly Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree, every node should have
exactly two children or none. That means every internal node must have exactly two children. A strictly Binary Tree
can be defined as follows...

* A binary tree in which every node has either two or zero number of children is called Strictly Binary Tree
Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree

Ex




2. Complete Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree, every node should have
exactly two children or none and in complete binary tree all the nodes must have exactly two children and at every

level of complete binary tree there must be 2'evel humber of nodes. For example at level 2 there must be 22 = 4 nodes

and at level 3 there must be 23 = 8 nodes.

* A binary tree in which every internal node has exactly two children and all leaf nodes are at same level is
called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree

3. Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes wherever required.

* The full binary tree obtained by adding dummy nodes to a binary tree is called as Extended Binary Tree.

]

In above figure, a normal binary tree is converted into full binary tree by adding dummy nodes (In pink colour).

Binary Tree Representations

A binary tree data structure is represented using two methods. Those methods are as follows...
1. Array Representation
2. Linked List Representation

Consider the following binary tree...



1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array) to represent a binary tree.
Consider the above example of a binary tree and it is represented as follows...

[AlB|cID|FIGIH[Y]J[-J-J-JK[-J-T-T-J-T-T-]-]

To represent a binary tree of depth 'n' using array representation, we need one dimensional array with a maximum
size of 2n + 1.

2. Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list, every node consists of three fields. First
field for storing left child address, second for storing actual data and third for storing right child address.
In this linked list representation, a node has the following structure...

Left Child Right Child
Address Data ddress ]

The above example of the binary tree represented using Linked list representation is shown as follows...

»

NULL NULL NULL

F

I J

NULL NULL NULL NULL




Binary Tree
Traversals

When we wanted to display a binary tree, we need to follow some order in which all the nodes of that binary tree
must be displayed. In any binary tree, displaying order of nodes depends on the traversal method.

* Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.
There are three types of binary tree traversals.

1. In - Order Traversal

2. Pre - Order Traversal

3. Post - Order Traversal

Consider the following binary tree...

1. In - Order Traversal (leftChild - root - rightChild )

In In-Order traversal, the root node is visited between the left child and right child. In this traversal, the left child
node is visited first, then the root node is visited and later we go for visiting the right child node. This in-order
traversal is applicable for every root node of all subtrees in the tree. This is performed recursively for all nodes in the
tree.

In the above example of a binary tree, first we try to visit left child of root node 'A’, but A's left child 'B' is a root node
for left subtree. so we try to visit its (B's) left child 'D' and again D is a root for subtree with nodes D, I and J. So we
try to visit its left child 'T' and it is the leftmost child. So first we visit 'I' then go for its root node 'D' and later we
visit D's right child 'J'. With this we have completed the left part of node B. Then visit 'B' and next B's right child 'F"
is visited. With this we have completed left part of node A. Then visit root node 'A'. With this we have completed left
and root parts of node A. Then we go for the right part of the node A. In right of A again there is a subtree with root
C. So go for left child of C and again it is a subtree with root G. But G does not have left part so we visit 'G' and then
visit G's right child K. With this we have completed the left part of node C. Then visit root node 'C' and next visit C's
right child "H" which is the rightmost child in the tree. So we stop the process.

That means here we have visited in the order of I-D-J-B-F-A- G - K - C - H using In-Order Traversal.

* In-Order Traversal for above example of binary tree is

I-D-J-B-F-A-G-K-C-H



2. Pre - Order Traversal ( root - leftChild - rightChild )

In Pre-Order traversal, the root node is visited before the left child and right child nodes. In this traversal, the root
node is visited first, then its left child and later its right child. This pre-order traversal is applicable for every root
node of all subtrees in the tree.

In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which is a root for D and F.
So we visit B's left child 'D" and again D is a root for I and J. So we visit D's left child 'I' which is the leftmost child.
So next we go for visiting D's right child 'J'. With this we have completed root, left and right parts of node D and
root, left parts of node B. Next visit B's right child "F'. With this we have completed root and left parts of node A. So
we go for A's right child 'C" which is a root node for G and H. After visiting C, we go for its left child 'G" which is a
root for node K. So next we visit left of G, but it does not have left child so we go for G's right child 'K'. With this,
we have completed node C's root and left parts. Next visit C's right child "H' which is the rightmost child in the tree.
So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

* Pre-Order Traversal for above example binary tree is
A-B-D-1-J-F-C-G-K-H

3. Post - Order Traversal ( leftChild - rightChild - root )

In Post-Order traversal, the root node is visited after left child and right child. In this traversal, left child node is
visited first, then its right child and then its root node. This is recursively performed until the right most node is
visited.

Here we have visited in the order of I-J-D -F-B-K -G - H - C - A using Post-Order Traversal.

* Post-Order Traversal for above example binary tree is

I-J-D-F-B-K-G-H-C-A
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//Binary Tree Display using In-Order Traversals
#include<stdio.h>
#include<conio.h>

struct Node{

int data;

struct Node *left;
struct Node *right;
I8

struct Node *root = NULL;
int count = 0;

struct Node* insert(struct Node*, int);
void display(struct Node*);

void main(){
int choice, value;
clrscr();
printf("\n----- Binary Tree ----- \n");
while(1){
printf("\n***** MENU *#*%#\n");
printf("1. Insert\n2. Display\n3. Exit");
printf("\nEnter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("\nEnter the value to be insert: ");
scanf("%d", &value);
root = insert(root,value);
break;
case 2: display(root); break;
case 3: exit(0);
default: printf("\nPlease select correct operations!!!\n");
}
}
}

struct Node* insert(struct Node *root,int value){
struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
if(root == NULL){
newNode->left = newNode->right = NULL;
root = newNode;
count++;
}
else{
if(count%?2 != 0)
root->left = insert(root->left,value);
else
root->right = insert(root->right,value);
}
return root;
}
// display is performed by using Inorder Traversal
void display(struct Node *root)

if(root != NULL){
display(root->left);
printf("%d\t",root->data);
display(root->right);
}
}



Search

Trees
Binary Search Tree

In a binary tree, every node can have a maximum of two children but there is no need to maintain the order of nodes
basing on their values. In a binary tree, the elements are arranged in the order they arrive at the tree from top to
bottom and left to right.

A binary tree has the following time complexities...
1. Search Operation — O(n)
2. Imsertion Operation — O(1)
3. Deletion Operation — O(n)

To enhance the performance of binary tree, we use a special type of binary tree known as Binary Search Tree. Binary
search tree mainly focuses on the search operation in a binary tree. Binary search tree can be defined as follows...

* Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree and
only larger values in its right subtree.

In a binary search tree, all the nodes in the left subtree of any node contains smaller values and all the nodes in the
right subtree of any node contains larger values as shown in the following figure..

Node|

ith valuej

0

Left
Subtree

Contains only

Contains only
larger values

All values <= K All values > K

Ex:

The following tree is a Binary Search Tree. In this tree, left subtree of every node contains nodes with smaller values
and right subtree of every node contains larger values.
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* Every binary search tree is a binary tree but every binary tree need not to be binary search tree.

Operations on a Binary Search Tree

The following operations are performed on a binary search tree...
1. Search
2. Insertion

3. Deletion

Search Operation in BST

In a binary search tree, the search operation is performed with O(leg n) time complexity. The search operation is
performed as follows...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function

Step 4 - If both are not matched, then check whether search element is smaller or larger than that node value.

Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6- If search element is larger, then continue the search process in right subtree.

Step 7 - Repeat the same until we find the exact element or until the search element is compared with the leaf
node

Step 8 - If we reach to the node having the value equal to the search value then display "Element is found" and
terminate the function.

Step 9 - If we reach to the leaf node and if it is also not matched with the search element, then display
"Element is not found" and terminate the function.

Insertion Operation in BST

In a binary search tree, the insertion operation is performed with O(log n) time complexity. In binary search tree, new
node is always inserted as a leaf node. The insertion operation is performed as follows...

Step 1 - Create a newNode with given value and set its left and right to NULL.

Step 2 - Check whether tree is Empty.

Step 3 - If the tree is Empty, then set root to newNode.

Step 4 - If the tree is Not Empty, then check whether the value of newNode is smaller or larger than the
node (here it is root node).

Step 5 - If newNode is smaller than or equal to the node then move to its left child. If newNode is larger
than the node then move to its right child.

Step 6- Repeat the above steps until we reach to the leaf node (i.e., reaches to NULL).

Step 7 - After reaching the leaf node, insert the newNode as left child if the newNode is smaller or equal to
that leaf node or else insert it as right child.

13



Deletion Operation in
BST

In a binary search tree, the deletion operation is performed with O(leg n) time complexity. Deleting a node from
Binary search tree includes following three cases...

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child
Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - Delete the node using free function (If it is a leaf) and terminate the function.

Case 2: Deleting a node with one child
We use the following steps to delete a node with one child from BST...
Step 1 - Find the node to be deleted using search operation

Step 2 - If it has only one child then create a link between its parent node and child node.
Step 3 - Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children
We use the following steps to delete a node with two children from BST...
Step 1 - Find the node to be deleted using search operation

Step 2 - If it has two children, then find the largest node in its left subtree (OR) the smallest node in its right
subtree.

Step 3 - Swap both deleting node and node which is found in the above step.

Step 4 - Then check whether deleting node came to case 1 or case 2 or else goto step 2

Step 5 - If it comes to case 1, then delete using case 1 logic.

Step 6- If it comes to case 2, then delete using case 2 logic.

Step 7 - Repeat the same process until the node is deleted from the tree.

Ex:
Construct a Binary Search Tree by inserting the following sequence of numbers...

10,12,5,4,20,8,7,15 and 13

Above elements are inserted into a Binary Search Tree as follows...

14



insert (10) insert (12) insert (5)

e

insert (4) insert (20) insert (8)
insert (7) insert (15) insert ( 13)
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16

//Binary Search Tree Implementation
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

struct node

{
int data;
struct node *left;
struct node *right;

void inorder(struct node *root)

{
if(root)
inorder(root->left);
printf(" %d",root->data);
inorder(root->right);
}

}

int main()

{
intn, i;

struct node *p , *q, *root;
printf("Enter the number of nodes to be insert: ");
scanf("'%d",&n);

printf("\nPlease enter the numbers to be insert: ");

for(i=0;i<i++)

{

p = (struct node*)malloc(sizeof(struct node));
scanf("%d",&p->data);

p->left = NULL;

p->right = NULL;

if(i == 0)
{
root = p; // root always point to the root node
}
else
{
q =root; //qis used to traverse the tree
while(1)
{
if(p->data > q->data)
{
if(g->right == NULL)
{
q->right = p;
break;
}
else
q = g->right;
}
else
{
if(g->left == NULL)
{
q->left = p;
break;
}
else
q = q->left;
}
}
}
}

printf("\nBinary Search Tree nodes in Inorder Traversal: ");
inorder(root);
printf("\n");

return 0;

}



AVL Tree

AVL tree is a height-balanced binary search tree. That means, an AVL tree is also a binary search tree but it is a
balanced tree. A binary tree is said to be balanced if, the difference between the heights of left and right subtrees of
every node in the tree is either -1, 0 or +1. In other words, a binary tree is said to be balanced if the height of left and
right children of every node differ by either -1, 0 or +1. In an AVL tree, every node maintains an extra information
known as balance factor. The AVL tree was introduced in the year 1962 by G.M. Adelson-Velsky and E.M. Landis.

An AVL tree is defined as follows...
* AnAVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node is either -1, 0 or +1.

Balance factor of a node is the difference between the heights of the left and right subtrees of that node. The balance
factor of a node is calculated either height of left subtree - height of right subtree (OR) height of right subtree -
height of left subtree. In the following explanation, we calculate as follows...

Balance factor = heightOfLeftSubtree — heightOfRightSubtree
Ex:

The above tree is a binary search tree and every node is satisfying balance factor condition. So this tree is said to be
an AVL tree.

* Every AVL Tree is a binary search tree but every Binary Search Tree need not be AVL tree.

AVL Tree Rotations

In AVL tree, after performing operations like insertion and deletion we need to check the balance factor of every
node in the tree. If every node satisfies the balance factor condition then we conclude the operation otherwise we
must make it balanced. Whenever the tree becomes imbalanced due to any operation we use rotation operations to
make the tree balanced.

Rotation operations are used to make the tree balanced.
* Rotation is the process of moving nodes either to left or to right to make the tree balanced.

There are four rotations and they are classified into twe types.

(LL Rotation)

Left Rotation
Single Rotation <
/ Right Rotation (RR Rotation)

Left Right Rotation (LR Rotation)
Double Rotation <
Right Left Rotation (RL Rotation)

Rotations
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Single Left Rotation (LL
Rotation)

In LL Rotation, every node moves one position to left from the current position. To understand LL Rotation, let us
consider the following insertion operation in AVL Tree...

insert 1, 2 and 3

-2
]
-1
o] 0
0
Tree is imbalanced To make balanced we use After LL Rotation
LL Rotation which moves Tree is Balanced

nodes one position to left

Single Right Rotation (RR Rotation)

In RR Rotation, every node moves one position to right from the current position. To understand RR Rotation, let us
consider the following insertion operation in AVL Tree...

insert 3, 2 and 1

2
0
1
0 0
0
Tree is imbalanced To make balanced we use After RR Rotation
because node 3 has balance factor 2 RR Rotation which moves Tree is Balanced

nodes one position to right

Left Right Rotation (LR Rotation)

The LR Rotation is a sequence of single left rotation followed by a single right rotation. In LR Rotation, at first, every
node moves one position to the left and one position to right from the current position. To understand LR Rotation, let
us consider the following insertion operation in AVL Tree...

insert 3, 1 and 2

2 2
-1 After LL Rotation
]
Tree is imbalanced LL Rotation RR Rotation After LR Rotation
because node 3 has balance factor 2 Tree is Balanced

Right I eft Rotation (RL Rotation)

The RL Rotation is sequence of single right rotation followed by single left rotation. In RL Rotation, at first every
node moves one position to right and one position to left from the current position. To understand RL Rotation, let us
consider the following insertion operation in AVL Tree...
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insert 1, 3 and 2
-2

Tree is imbalanced RR Rotation LL Rotation After RL Rotation
ccause node i nee factor Tree is Balanced

Operations on an AVL Tree

The following operations are performed on AVL tree...

1.
2.
3.

Search
Insertion

Deletion

Search Operation in AVL Tree

In an AVL tree, the search operation is performed with O(log n) time complexity. The search operation in the AVL
tree is similar to the search operation in a Binary search tree. We use the following steps to search an element in AVL

tree...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function

Step 4 - If both are not matched, then check whether search element is smaller or larger than that node value.
Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6 - If search element is larger, then continue the search process in right subtree.

Step 7 - Repeat the same until we find the exact element or until the search element is compared with the leaf
node.

Step 8 - If we reach to the node having the value equal to the search value, then display "Element is found"
and terminate the function.

Step 9 - If we reach to the leaf node and if it is also not matched with the search element, then display
"Element is not found" and terminate the function.

Insertion Operation in AVL Tree

In an AVL tree, the insertion operation is performed with O(log n) time complexity. In AVL Tree, a new node is
always inserted as a leaf node. The insertion operation is performed as follows...

Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2 - After insertion, check the Balance Factor of every node.

Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said to be imbalanced. In
this case, perform suitable Rotation to make it balanced and go for next operation.

Ex: Construct an AVL Tree by inserting numbers from 1 to 8.
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20

insert 1

@ Tree is balanced

insert 2
-1

% Tree is balanced
insert 3

-2

0
=1 After LL Rotation
R g o
o]
Tree is imbalanced LL Rotation Tree is balanced

insert 4

Tree is balanced

insert 5

Tree is imbalanced LL Rotation at 3 Tree is balanced

becomes right child of 2

Tree is imbalanced LL Rotation at 2 Tree is balanced

insert 7

Tree is imbalanced LL Rotation at 5 Tree is balanced

insert 8

Tree is balanced



Deletion Operation in AVL
Tree

The deletion operation in AVL Tree is similar to deletion operation in BST. But after every deletion operation, we
need to check with the Balance Factor condition. If the tree is balanced after deletion go for next operation otherwise
perform suitable rotation to make the tree Balanced.

Red - Black

Red - Black Tree is another variant of Binary Search Tree in which every node is colored either RED or BLACK. We
can define a Red Black Tree as follows...

* Red Black Tree is a Binary Search Tree in which every node is colored either RED or BLACK.

In Red Black Tree, the color of a node is decided based on the properties of Red-Black Tree. Every Red Black Tree
has the following properties.

Properties of Red Black Tree

Property #1: Red - Black Tree must be a Binary Search Tree.

Property #2: The ROOT node must be colored BLACK.

Property #3: The children of Red colored node must be colored BLACK. (There should not be two
consecutive RED nodes).

Property #4: In all the paths of the tree, there should be same number of BLACK colored nodes.
Property #5: Every new node must be inserted with RED color.

Property #6: Every leaf (e.i. NULL node) must be colored BLACK.

Ex: Following is a Red-Black Tree which is created by inserting numbers from 1 to 9.

The above tree is a Red-Black tree where every node is satisfying all the properties of Red-Black Tree.

* Every Red Black Tree is a binary search tree but every Binary Search Tree need not be Red Black tree.

Insertion into RED BLLACK Tree

In a Red-Black Tree, every new node must be inserted with the color RED. The insertion operation in Red Black Tree
is similar to insertion operation in Binary Search Tree. But it is inserted with a color property. After every insertion
operation, we need to check all the properties of Red-Black Tree. If all the properties are satisfied then we go to next
operation otherwise we perform the following operation to make it Red Black Tree.
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1. Recolor
2. Rotation
3. Rotation followed by Recolor
The insertion operation in Red Black tree is performed using the following steps...
Step 1 - Check whether tree is Empty.

Step 2 - If tree is Empty then insert the newNode as Root node with color Black and exit from the operation.
Step 3 - If tree is not Empty then insert the newNode as leaf node with color Red.

Step 4 - If the parent of newNode is Black then exit from the operation.

Step 5 - If the parent of newNode is Red then check the color of parentnode's sibling of newNode.

Step 6 - If it is colored Black or NULL then make suitable Rotation and Recolor it.

Step 7 - If it is colored Red then perform Recolor. Repeat the same until tree becomes Red Black Tree.

Ex:
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Create a RED BLACK Tree by inserting
S, 18, 5. 15, 17. 25. 40 & S0.

insert ( 8)
Tree is Empty. So insert newNode as Root node with black color.

insert { 18 )
Tree is not Empty. So insert newNode with red color.

insert { 5)
Tree is not Empty. So insert newNode with red color.

insert { 1S)
Tree is not Empty. So insert newNode with red color.

Here there are two consecutive Red nodes (18 & 15).
The newnodes parent sibling color is Red

and parent’s parent is root node.
So we use RECOLOR to make it Red Black Tree.

v After RECOLOR.

After i the tree is
properties.

= all Red Black Tree

insert 17 )
Tree is not Empty. So insert newNode with red color.

Here there are two consecutive Red nodes (15 & 17).
The newnode’s parent sibling is NULL. So we need
rotation.

Here, we need LR Rotation & Recolor.

v After Left Rotation

://:>B e Mmo/:)\@

insert { 25 )
Tree is not Empty. So insert newNode with red color.

Here there are two consecutive Red nodes (18 & 25).
The newnode’s parent sibling color is Red

and parent’s parent is not root node.

So we use RECOLOR and Recheck.

v After Recolor

After Recolor operation, the tree is satisfying all Red Black Tree
properties.

insert { 40)
Tree is not Empty. So insert newNode with red color.

Here there are two consecutive Red nodes (25 & 40).
The newnode’s parent sibling is NULL.

So we need a Rotation & Recolor.

Here, we use LL Rotation and Recheck.

After LL Rotation
& Recolor

After LL ion & ion, the tree is satisfying
all Red Black Tree properties.

insert { 80)
Tree is not Empty. So insert newNode with red color.

Here there are two consecutive Red nodes (40 & S0).
The newnode’s parent sibling color is Red

and parent’s parent is not root node.

So we use RECOLOR and Recheck.

v After Recolor

Afier Recolor again there are two consecutive Red nodes (17 & 25).
The newnode’s parent sibling color is Black. So we need Rotation.
We use Left Rotation & Recolor.

Afier Left Rotation
Sc Recolor

Finally above tree is satisfying all the properties of Red Black Tree and
it is a perfect Red Black tree.



Deletion Operation in Red Black
Tree

The deletion operation in Red-Black Tree is similar to deletion operation in BST. But after every deletion operation,
we need to check with the Red-Black Tree properties. If any of the properties are violated then make suitable
operations like Recolor, Rotation and Rotation followed by Recolor to make it Red-Black Tree.

Splay Tree

Splay tree is another variant of a binary search tree. In a splay tree, recently accessed element is placed at the root of
the tree. A splay tree is defined as follows...

* Splay Tree is a self - adjusted Binary Search Tree in which every operation on element rearranges the tree so
that the element is placed at the root position of the tree.

In a splay tree, every operation is performed at the root of the tree. All the operations in splay tree are involved with a
common operation called "Splaying".

* Splaying an element, is the process of bringing it to the root position by performing suitable rotation
operations.

In a splay tree, splaying an element rearranges all the elements in the tree so that splayed element is placed at the root
of the tree.

By splaying elements we bring more frequently used elements closer to the root of the tree so that any operation on
those elements is performed quickly. That means the splaying operation automatically brings more frequently used
elements closer to the root of the tree.

Every operation on splay tree performs the splaying operation. For example, the insertion operation first inserts the
new element using the binary search tree insertion process, then the newly inserted element is splayed so that it is
placed at the root of the tree. The search operation in a splay tree is nothing but searching the element using binary
search process and then splaying that searched element so that it is placed at the root of the tree.

In splay tree, to splay any element we use the following rotation operations...

Rotations in Splay Tree

1. Zig Rotation

2. Zag Rotation

3. Zig - Zig Rotation
4. Zag - Zag Rotation
5. Zig - Zag Rotation
6. Zag - Zig Rotation

Ex:

Zig Rotation

The Zig Rotation in splay tree is similar to the single right rotation in AVL Tree rotations. In zig rotation, every node
moves one position to the right from its current position. Consider the following example...

e Splay ( 3) e
G ® mp @ &

Zig Rotation

e o Single Right Rotation Q G

24



Zag
Rotation

The Zag Rotation in splay tree is similar to the single left rotation in AVL Tree rotations. In zag rotation, every node
moves one position to the left from its current position. Consider the following example...

Splay (5)

Zag Rotation

Single Left Rotation

Zig-Zig Rotation

The Zig-Zig Rotation in splay tree is a double zig rotation. In zig-zig rotation, every node moves two positions to the
right from its current position. Consider the following example...

Splay ( 2)

Zig-Zig Rotation
Double Right Rotation

Zag-7Zag Rotation

The Zag-Zag Rotation in splay tree is a double zag rotation. In zag-zag rotation, every node moves two positions to
the left from its current position. Consider the following example...

Splay ( 6)

»

Zag-Zag Rotation

e Double Left Rotation

Zig-Zag Rotation

The Zig-Zag Reotation in splay tree is a sequence of zig rotation followed by zag rotation. In zig-zag rotation, every
node moves one position to the right followed by one position to the left from its current position. Consider the
following example...

Splay ( 4)

e Zag Rotatio

Zig Rotation at 3

at5s
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Zag-Zig
Rotation

The Zag-Zig Rotation in splay tree is a sequence of zag rotation followed by zig rotation. In zag-zig rotation, every
node moves one position to the left followed by one position to the right from its current position. Consider the
following example...

Splay ( 4 )

Zag Rotation
at 3

Zig Rotation
at 5

* Every Splay tree must be a binary search tree but it is need not to be balanced tree.

Insertion Operation in Splay Tree

The insertion operation in Splay tree is performed using following steps...
Step 1 - Check whether tree is Empty.

Step 2 - If tree is Empty then insert the newNode as Root node and exit from the operation.
Step 3 - If tree is not Empty then insert the newNode as leaf node using Binary Search tree insertion logic.
Step 4 - After insertion, Splay the newNode

Deletion Operation in Splay Tree

The deletion operation in splay tree is similar to deletion operation in Binary Search Tree. But before deleting the
element, we first need to splay that element and then delete it from the root position. Finally join the remaining tree
using binary search tree logic.
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